2015
DOI: 10.1016/j.burns.2015.07.001
|View full text |Cite
|
Sign up to set email alerts
|

Machine learning in burn care and research: A systematic review of the literature

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
24
0
1

Year Published

2016
2016
2023
2023

Publication Types

Select...
9

Relationship

0
9

Authors

Journals

citations
Cited by 33 publications
(25 citation statements)
references
References 35 publications
0
24
0
1
Order By: Relevance
“…Independent scrutiny of the titles and abstracts by two authors (JW; ZT) identified 119 potentially relevant articles. Of those, we excluded an additional 59 studies because they failed to meet the methodological definition of systematic review as per our inclusion criteria . Therefore, a total of 60 systematic reviews formed the basis of this study …”
Section: Resultsmentioning
confidence: 99%
“…Independent scrutiny of the titles and abstracts by two authors (JW; ZT) identified 119 potentially relevant articles. Of those, we excluded an additional 59 studies because they failed to meet the methodological definition of systematic review as per our inclusion criteria . Therefore, a total of 60 systematic reviews formed the basis of this study …”
Section: Resultsmentioning
confidence: 99%
“…A recent report of the use of machine learning in burn care and research returned 15 retrospective observation studies related to: burn diagnosis and healing (n = 5), antibacterial response in the burn wound (n = 4), hospital length of stay (n = 2), and mortality (n = 4). [ 39 ] Although algorithm performance was assessed differently in each report, all demonstrated improved performance of machine learning over traditional biostatistics methodologies. These techniques may be particularly useful for determining the impacts of depth and distribution of burn injury on long-term health and function.…”
Section: Discussionmentioning
confidence: 99%
“…La esperanza de disponer de conclusiones significativas en la inmensidad de información médica y terapéutica alcanzada se va vislumbrando mediante el uso de inteligencias artificiales [70] y el uso del aprendizaje automático (machine learning), dado que permite un rendimiento superior a los métodos estadísticos tradicionales [71], [72]. Por ejemplo, m-fasis incorpora todos los marcos analíticos de lesiones deportivas anteriores y las cuentas de lesiones o afecciones que sanan o no sanan al 100%, lesiones agudas y por uso excesivo, enfermedades y resultados de eventos competitivos, lo cual permite elegir de manera más transparente respecto al resultado y el tiempo de curación de una lesión [73].…”
Section: Impacto De Las Nuevas Tecnologías En La Reparación De Las Leunclassified