Machine Learning in Catalysis: Analysis and Prediction of CO Adsorption on Multi-elemental Nanoparticle using Metal Coordination-based Regression Model
Susan Menez ASPERA,
Gerardo Valadez HUERTA,
Yusuke NANBA
et al.
Abstract:Information about molecular adsorption strength is important in every catalytic reaction. The ability to compare and determine relevant molecular active sites of interaction is necessary for fast screening of potential catalysts specially in a vast spectrum of probable candidates. In this study, we used the metal-coordination of the adsorption sites as a descriptor of the adsorption energy of CO on the PtRuIr ternary alloy nanoparticle. Using multiple regression model, we are able to predict the adsorption ene… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.