This article is concerned with data-driven analysis of discrete-time systems under aperiodic sampling, and in particular with a data-driven estimation of the maximum sampling interval (MSI). The MSI is relevant for analysis of and controller design for cyber-physical, embedded and networked systems, since it gives a limit on the time span between sampling instants such that stability is guaranteed. We propose tools to compute the MSI for a given controller and to design a controller with a preferably large MSI, both directly from a finite-length, noisecorrupted state-input trajectory of the system. We follow two distinct approaches for stability analysis, one taking a robust control perspective and the other a switched systems perspective on the aperiodically sampled system. In a numerical example and a subsequent discussion, we demonstrate the efficacy of our developed tools and compare the two approaches.