Machine learning in knee injury sequelae detection: Unravelling the role of psychological factors and preventing long‐term sequelae
Clément LIPPS LENE,
Julien Frere,
Thierry Weissland
Abstract:PurposeThis study evaluated the performance of three machine learning (ML) algorithms—decision tree (DT), multilayer perceptron (MLP) and extreme gradient boosting (XGB)—in identifying regular athletes who suffered a knee injury several months to years prior. In addition, the contribution of psychological variables in addition to biomechanical ones in the classification performance of the ML algorithms was assessed, to better identify factors to get back to competitive sport with the lowest possible risk of ne… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.