2016
DOI: 10.14778/3007263.3007318
|View full text |Cite
|
Sign up to set email alerts
|

Machine learning in the real world

Abstract: Machine Learning (ML) has become a mature technology that is being applied to a wide range of business problems such as web search, online advertising, product recommendations, object recognition, and so on. As a result, it has become imperative for researchers and practitioners to have a fundamental understanding of ML concepts and practical knowledge of end-to-end modeling. This tutorial takes a hands-on approach to introducing the audience to machine learning. The first part of the tutorial gives a broad ov… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
5
0
2

Year Published

2017
2017
2024
2024

Publication Types

Select...
3
3
1
1

Relationship

0
8

Authors

Journals

citations
Cited by 15 publications
(7 citation statements)
references
References 5 publications
0
5
0
2
Order By: Relevance
“…Stattdessen existieren viele Anleitungen zum praktischen, induktiven Vorgehen (vgl. Amershi et al, 2019;Chaoji et al, 2016). Dazu kommt die (Selbst-)kritik zum Mangel an Theoriebezügen (vgl.…”
Section: Methodologieunclassified
See 1 more Smart Citation
“…Stattdessen existieren viele Anleitungen zum praktischen, induktiven Vorgehen (vgl. Amershi et al, 2019;Chaoji et al, 2016). Dazu kommt die (Selbst-)kritik zum Mangel an Theoriebezügen (vgl.…”
Section: Methodologieunclassified
“…Kandel et al, 2012) oder Workflows schematisch dargestellt (vgl. Kotsiantis, 2007;Gill et al, 2020;Chaoji et al, 2016;Amershi et al, 2019), wobei sich diese Ansätze eher unter dem Begriff "Data Science" sammeln und nicht "Machine Learning" oder "Textklassifikation". Eine hohe Precision beschreibt damit den Anteil der identifizierten Klassifizierungen an jenen, die gefunden werden sollten.…”
Section: Automatische Textklassifikation: Gütekriterienunclassified
“…Data science projects can range from well-defined prediction tasks (e.g., predict labels given images) to building and monitoring a large collection of modeling or analysis pipelines, often over a long period of time [3], [8], [27], [28]. Using a lifecycle provenance management system ( Fig.…”
Section: A System Design and Motivating Examplementioning
confidence: 99%
“…Machine learning (ML) has become ubiquitous in recent years and its success can be attributed to its ability to extract knowledge and make decisions by learning the underlying structures of large input datasets [17], [27], [36]. To train learning models, ML applications often adopt the iterative optimization process [12].…”
Section: Introductionmentioning
confidence: 99%
“…In many reallife applications, the training algorithm has to process a tremendous number of input data instances and takes a significantly long time, tending to be the bottleneck of ML. The outstanding challenge still remains of how to efficiently use ML systems on massive input data points [17], [28] and commodity hardware [24], [44].…”
Section: Introductionmentioning
confidence: 99%