Machine-learning interatomic potentials for materials science
Y. Mishin
Abstract:Large-scale atomistic computer simulations of materials rely on interatomic potentials providing computationally efficient predictions of energy and Newtonian forces. Traditional potentials have served in this capacity for over three decades. Recently, a new class of potentials has emerged, which is based on a radically different philosophy. The new potentials are constructed using machine-learning (ML) methods and a massive reference database generated by quantum-mechanical calculations. While the traditional… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.