2022
DOI: 10.1016/j.arabjc.2021.103612
|View full text |Cite
|
Sign up to set email alerts
|

Machine learning method for simulation of adsorption separation: Comparisons of model’s performance in predicting equilibrium concentrations

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
2
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
9

Relationship

1
8

Authors

Journals

citations
Cited by 40 publications
(4 citation statements)
references
References 57 publications
0
2
0
1
Order By: Relevance
“…e in-depth data search strategy to be followed to get the more specific and trending research topics can be found in the domain of healthcare using blockchain interoperability [43,44].…”
Section: Study Limitations Scopus Database Has Been Used In Thismentioning
confidence: 99%
“…e in-depth data search strategy to be followed to get the more specific and trending research topics can be found in the domain of healthcare using blockchain interoperability [43,44].…”
Section: Study Limitations Scopus Database Has Been Used In Thismentioning
confidence: 99%
“…Guanwei Yin et al (2021) explored different ML models-Multi-Layer Perceptron (MLP), Passive Aggressive Regression, and Decision Tree Regressor-to predict dye adsorption from aqueous solutions. Among these, the Decision Tree Regressor emerged as the most effective, suggesting its suitability for correlating adsorption equilibrium data due to high accuracy and low error rates (R 2 = 0.99) [59]. Chen Zhao et al (2024) demonstrated how multivalent ions like Ca 2+ , K + , Na + , and Mg 2+ impact the adsorption of azo dyes using ML models coupled with Density Functional Theory (DFT).…”
Section: Machine Learning-assisted Optimization For Improving the Ads...mentioning
confidence: 99%
“…Dolayısıyla, RMSE'in mümkün olduğunca küçük, r 2 değerinin ise mümkün olduğunca büyük olması beklenmektedir. Bu çalışmada, 'Diamonds' veri kümesi için en uygun regresyon modelini belirlerken, RMSE ve r 2 ölçütlerinin ikisini bir arada değerlendirmek tercih edilmiştir [11].…”
Section: Veri Kümesi üZerinde Regresyon Modelleriunclassified