2023
DOI: 10.22430/22565337.2789
|View full text |Cite
|
Sign up to set email alerts
|

Machine Learning Model for Primary Solar Resource Assessment in Colombia

Edgar Darío Obando Paredes

Abstract: This work introduces a Machine Learning (ML) model designed to predict solar radiation in diverse cities representing Colombia's climatic variability. It is crucial to assert that the amount of solar energy received in a specific region is directly related to solar radiation and its availability, which is influenced by each area's particular climatic and geographic conditions. Due to the high variability and resulting uncertainty, various approaches have been explored, including the use of numerical models to … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 31 publications
0
0
0
Order By: Relevance