Machine Learning Model Reveals Determinators for Admission to Acute Mental Health Wards From Emergency Department Presentations
Oliver Higgins,
Stephan K. Chalup,
Rhonda L. Wilson
Abstract:This research addresses the critical issue of identifying factors contributing to admissions to acute mental health (MH) wards for individuals presenting to the emergency department (ED) with MH concerns as their primary issue, notably suicidality. This study aims to leverage machine learning (ML) models to assess the likelihood of admission to acute MH wards for this vulnerable population. Data collection for this study used existing ED data from 1 January 2016 to 31 December 2021. Data selection was based on… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.