2022
DOI: 10.1002/app.52194
|View full text |Cite
|
Sign up to set email alerts
|

Machine learning models for estimating the AC conductivity mechanism of Edirne Kufeki stone reinforced Polypyrrole composites

Abstract: In this study, the detailed temperature and frequency-dependent (ac) conductivity analyzes of Polypyrrole/Edirne Kufeki Stone (PPy/EKS) composites have been realized by considering both experimental and Machine Learning (ML) algorithms predicted data. In this respect, the experimental ac conductivity data of pure PPy, PPy/5% EKS, PPy/10% EKS, and PPy/20% EKS composites between 1 Hz and 40 MHz at 296, 313, and 333 K temperatures have been usedfor the data set of ML. First, a benchmark study has been done for ap… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 38 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?