Machine Learning Models Predicting Incidence, Severity, and Early Outcomes of Hemorrhagic Stroke from Weather Parameters and Individual Risk Factors
Yauhen Statsenko,
Ekaterina Fursa,
Vasyl Laver
et al.
Abstract:Herein, we examined the effects of weather parameters and individual clinicodemographic risk factors on hemorrhagic stroke (HS) incidence, severity on admission, and disability at discharge in a harsh desert climate. In a retrospective design we studied patients admitted to a stroke unit in Arab Emirates in 2016-2019. With a distributed lag nonlinear model we explored immediate and delayed effects of weather on stroke incidence. Supervised machine learning was used to build models predictive of scores in NIHSS… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.