2023
DOI: 10.3390/app13031371
|View full text |Cite
|
Sign up to set email alerts
|

Machine Learning Pipeline for the Automated Prediction of MicrovascularInvasion in HepatocellularCarcinomas

Abstract: Background: Microvascular invasion (MVI) is a necessary step in the metastatic evolution of hepatocellular carcinoma liver tumors. Predicting the onset of MVI in the initial stages of the tumors could improve patient survival and the quality of life. In this study, the possibility of using radiomic features to predict the presence/absence of MVI was evaluated. Methods: Multiphase contrast-enhanced computed tomography (CECT) images were collected from 49 patients, and the radiomic features were extracted from t… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 31 publications
0
0
0
Order By: Relevance