Computer Science and Machine Learning Trends 2023 2023
DOI: 10.5121/csit.2023.130102
|View full text |Cite
|
Sign up to set email alerts
|

Machine-Learning Prediction of the Computed Band Gaps of Double Perovskite Materials

Abstract: Prediction of the electronic structure of functional materials is essential for the engineering of new devices. Conventional electronic structure prediction methods based on density functional theory (DFT) suffer from not only high computational cost, but also limited accuracy arising from the approximations of the exchange-correlation functional. Surrogate methods based on machine learning have garnered much attention as a viable alternative to bypass these limitations, especially in the prediction of solid-s… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
references
References 33 publications
0
0
0
Order By: Relevance