Estimating rock facies from petrophysical logs in non-cored wells in complex carbonates represents a crucial task for improving reservoir characterization and field development. Thus, it most essential to identify the lithofacies that discriminate the reservoir intervals based on their flow and storage capacity. In this paper, an innovative procedure is adopted for lithofacies classification using data-driven machine learning in a well from the Mishrif carbonate reservoir in the giant Majnoon oil field, Southern Iraq.
The Random Forest method was adopted for lithofacies classification using well logging data in a cored well to predict their distribution in other non-cored wells. Furthermore, three advanced statistical algorithms: Logistic Boosting Regression, Bagging Multivariate Adaptive Regression Spline, and Generalized Boosting Modeling were implemented and compared to the Random Forest approach to attain the most realistic lithofacies prediction. The dataset includes the measured discrete lithofacies distribution and the original log curves of caliper, gamma ray, neutron porosity, bulk density, sonic, deep and shallow resistivity, all available over the entire reservoir interval.
Prior to applying the four classification algorithms, a random subsampling cross-validation was conducted on the dataset to produce training and testing subsets for modeling and prediction, respectively. After predicting the discrete lithofacies distribution, the Confusion Table and the Correct Classification Rate Index (CCI) were employed as further criteria to analyze and compare the effectiveness of the four classification algorithms. The results of this study revealed that Random Forest was more accurate in lithofacies classification than other techniques. It led to excellent matching between the observed and predicted discrete lithofacies through attaining 100% of CCI based on the training subset and 96.67 % of the CCI for the validating subset. Further validation of the resulting facies model was conducted by comparing each of the predicted discrete lithofacies with the available ranges of porosity and permeability obtained from the NMR log. We observed that rudist-dominated lithofacies correlates to rock with higher porosity and permeability. In contrast, the argillaceous lithofacies correlates to rocks with lower porosity and permeability. Additionally, these high-and low-ranges of permeability were later compared with the oil rate obtained from the PLT log data. It was identified that the high-and low-ranges of permeability correlate well to the high- and low-oil rate logs, respectively.
In conclusion, the high quality estimation of lithofacies in non-cored intervals and wells is a crucial reservoir characterization task in order to obtain meaningful permeability-porosity relationships and capture realistic reservoir heterogeneity. The application of machine learning techniques drives down costs, provides for time-savings, and allows for uncertainty mitigation in lithofacies classification and prediction. The entire workflow was done through R, an open-source statistical computing language. It can easily be applied to other reservoirs to attain for them a similar improved overall reservoir characterization.