Background:
NOP58 ribonucleoprotein (NOP58) is associated with the recurrence of lung adenocarcinoma.
Aims:
Few investigations concentrate on the role of NOP58 in non-small cell lung cancer (NSCLC), which is the
focus of our current study.
Methods:
Following transfection, the proliferation, migration, and invasion of NSCLC cells were assessed by 5-
ethynyl-2’-deoxyuridine (EdU), wound healing, and transwell assays. The percentage of CD9+ cells was evaluated
by flow cytometry assay. Based on target genes and binding sites predicted through bioinformatics analysis, a
dual-luciferase reporter assay was performed to verify the targeting relationship between hsa_circ_0001550 and
NOP58. The effect of NOP58 overexpression on hsa_circ_0001550 stability was gauged using Actinomycin D.
The hsa_circ_0001550 and NOP58 expression levels, as well as protein expressions of CD44, CD133, OCT4, and
SOX2 in NSCLC cells were determined by quantitative real-time PCR and Western blot, respectively.
Results:
Hsa_circ_0001550 was remarkably up-regulated in NSCLC cell lines A549 and PC9, silencing of which
weakened cell abilities to proliferate, migrate and invade, decreased CD9+ cell ratio, and diminished protein
expressions of CD44, CD133, OCT4, and SOX2. NOP58 could bind to hsa_circ_0001550 and stabilize its expression,
and NOP58 overexpression partially abrogated hsa_circ_0001550 knockdown-inhibited NSCLC cell
proliferation, migration, invasion and stemness.
Conclusion:
Overexpression of NOP58 facilitates proliferation, migration, invasion, and stemness of NSCLC
cells by stabilizing hsa_circ_0001550, hinting that NOP58 is a novel molecular target for NSCLC therapy.