2020
DOI: 10.1002/jbmr.4292
|View full text |Cite
|
Sign up to set email alerts
|

Machine Learning Solutions for Osteoporosis—A Review

Abstract: Osteoporosis and its clinical consequence, bone fracture, is a multifactorial disease that has been the object of extensive research. Recent advances in machine learning (ML) have enabled the field of artificial intelligence (AI) to make impressive breakthroughs in complex data environments where human capacity to identify high‐dimensional relationships is limited. The field of osteoporosis is one such domain, notwithstanding technical and clinical concerns regarding the application of ML methods. This qualita… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

2
52
0
1

Year Published

2020
2020
2024
2024

Publication Types

Select...
9
1

Relationship

1
9

Authors

Journals

citations
Cited by 114 publications
(68 citation statements)
references
References 144 publications
2
52
0
1
Order By: Relevance
“…The best-studied strategy is the use of abdominal CT to predict spine BMD 19 , 20 , 23 , classify osteoporosis based on CT attenuation 22 , simulated BMD 19 , 20 , T -score 23 , or detect osteoporotic fractures 38 ; or use imaging biomarkers to predict the risk of fractures 24 . Julien Smets et al reviewed machine learning solutions for osteoporosis 39 . Among five studies using CT scans to predict BMD, the best correlation coefficient between estimated and CT-simulated spine BMD was 0.94 21 .…”
Section: Discussionmentioning
confidence: 99%
“…The best-studied strategy is the use of abdominal CT to predict spine BMD 19 , 20 , 23 , classify osteoporosis based on CT attenuation 22 , simulated BMD 19 , 20 , T -score 23 , or detect osteoporotic fractures 38 ; or use imaging biomarkers to predict the risk of fractures 24 . Julien Smets et al reviewed machine learning solutions for osteoporosis 39 . Among five studies using CT scans to predict BMD, the best correlation coefficient between estimated and CT-simulated spine BMD was 0.94 21 .…”
Section: Discussionmentioning
confidence: 99%
“…Wir haben im Rahmen der Diagnostik Bilanz Studie des BioAsset Projekts [15] KI Verfahren getestet und auch hier konnte eine gute Performance hinsichtlich der automatischen Detektion von Wirbelkörperfrakturen gezeigt werden [12]. Das Potential dieser KI Ansätze ist auch bereits in ersten Reviews im Überblick zusammengestellt worden [44]. Noch sind die Studien begrenzt, verwenden unterschiedliche KI-Modelle, und die Dokumentation der Übertragbarkeit und Robustheit der Prädiktionswerte steht noch aus.…”
Section: Ki-basierte Wirbelkörperfrakturdiagnostikunclassified
“…Convolutional neural networks (CNNs) show excellent object detection and classification performance [ 19 ]. Many studies based on CNNs have been conducted in the field of dentistry [ 20 , 21 ], for tooth numbering [ 22 ] and analysis of dental caries [ 23 ], osteoporosis [ 24 ], periodontal bone loss [ 25 ], submerged primary teeth [ 26 ] and dental implants [ 27 29 ]. CNNs learn directly from raw input data and classify images without the requirement for manual feature extraction.…”
Section: Introductionmentioning
confidence: 99%