Search citation statements
Paper Sections
Citation Types
Publication Types
Relationship
Authors
Journals
It is difficult to detect and identify natural defects in welded components. To solve this problem, according to the Faraday magneto-optical (MO) effect, a nondestructive testing system for MO imaging, excited by an alternating magnetic field, is established. For the acquired MO images of crack, pit, lack of penetration, gas pore, and no defect, Gaussian filtering, bilateral filtering, and median filtering are applied for image preprocessing. The effectiveness of these filtering methods is evaluated using metrics such as peak signal–noise ratio (PSNR) and mean squared error. Principal component analysis (PCA) is employed to extract column vector features from the downsampled defect MO images, which then serve as the input layer for the error backpropagation (BP) neural network model and the support vector machine (SVM) model. These two models can be used for the classification of partial defect MO images, but the recognition accuracy for cracks and gas pores is comparatively low. To further enhance the classification accuracy of natural weld defects, a convolutional neural network (CNN) classification model and a ResNet50 classification model for MO images of natural weld defects are established, and the model parameters are evaluated and optimized. The experimental results show that the overall classification accuracy of the ResNet50 model is 99%. Compared with the PCA-SVM model and CNN model, the overall classification accuracy was increased by 7.4% and 1.8%, and the classification accuracy of gas pore increased by 10% and 4%, respectively, indicating that the ResNet50 model can effectively and accurately classify natural weld defects.
It is difficult to detect and identify natural defects in welded components. To solve this problem, according to the Faraday magneto-optical (MO) effect, a nondestructive testing system for MO imaging, excited by an alternating magnetic field, is established. For the acquired MO images of crack, pit, lack of penetration, gas pore, and no defect, Gaussian filtering, bilateral filtering, and median filtering are applied for image preprocessing. The effectiveness of these filtering methods is evaluated using metrics such as peak signal–noise ratio (PSNR) and mean squared error. Principal component analysis (PCA) is employed to extract column vector features from the downsampled defect MO images, which then serve as the input layer for the error backpropagation (BP) neural network model and the support vector machine (SVM) model. These two models can be used for the classification of partial defect MO images, but the recognition accuracy for cracks and gas pores is comparatively low. To further enhance the classification accuracy of natural weld defects, a convolutional neural network (CNN) classification model and a ResNet50 classification model for MO images of natural weld defects are established, and the model parameters are evaluated and optimized. The experimental results show that the overall classification accuracy of the ResNet50 model is 99%. Compared with the PCA-SVM model and CNN model, the overall classification accuracy was increased by 7.4% and 1.8%, and the classification accuracy of gas pore increased by 10% and 4%, respectively, indicating that the ResNet50 model can effectively and accurately classify natural weld defects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.