Abstract:The analysis of process and equipment operational data in chemical engineering regularly requires a high level of expert knowledge. This work presents a Machine Learning-based approach to evaluate and interpret process data to support robust operation of a thermosiphon reboiler. By applying an outlier detection, potentially interesting and unstable operating conditions can be identified quickly. A multidimensional regression allows to forecast the circulating mass flow. The results obtained fit well into the c… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.