2019
DOI: 10.35940/ijeat.a1171.109119
|View full text |Cite
|
Sign up to set email alerts
|

Machine Learning Technique for Crop Recommendation in Agriculture Sector

Dr. Nitin N. Patil,
Mr. Mohammad Ali M. Saiyyad

Abstract: Numerous efforts have been demonstrated through various innovations to lead towards the betterment of agriculture sector till now. Effective and innovative use of Science and Technology can help to improve crop quality and production, yield prediction and crop disease analysis. Agriculture sector provides various productions such as food, raw material for industry and has a significant impact on economy and employment of a country. The agriculture sector contains huge data with respect to factors affecting its… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
4
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
4
1
1

Relationship

0
6

Authors

Journals

citations
Cited by 6 publications
(5 citation statements)
references
References 12 publications
0
4
0
1
Order By: Relevance
“…[32], [3]. Predicción de lluvia [24] Agglomotive Hierarchical Clustering Region based routing [6] Equalized cluster head election routing protocol [6] Terrain based Routing using Fuzzy rules for precision agriculture" [6], [53] Segmentación [48], [40] Segmento de tiempo [73] Clasificación de Bayes ingenuo con distribución gaussiana [46] Reglas de asociación [46], [3] Descomposición de abono verde y Redes de reglas de asociación [43] Recomendación cultivo caña de azúcar [60] Minería de regresión multivariable) [46] Ensemble learning [9] Red neuronal recurrente espaciotemporal (STRNN) [9] Deep learning Toma de decisiones de datos agrícolas [56] Rendimiento de cultivo -QRECF-DFFMPC [59] Estudio del crecimiento de la col [26] Sistemas de recomendación Recomendación cultivo caña de azúcar [60] K-NN [74], [37], [78] , [3], Calidad de agua [22] Predicción del nivel de humedad [38] Naive bayes ( nb) [74], [78] Mejorar la calidad de los cultivos [58] clasificación de hongos comestibles o no comestibles [70] Rendimiento del cultivo de arroz [29] Bayes net clasificación de hongos comestibles o no comestibles [70] [80] ZeroR clasificación de hongos comestibles o no comestibles [70] K-measns clustering [33] Bagged-C4.5 [79] Regresión lineal [72], Calidad de agua [22] ARIMA (Autoregressive Integrated Moving Average) [81] Bagging (BG) …”
Section: Tabla 7: Técnicas De Minería De Datosunclassified
“…[32], [3]. Predicción de lluvia [24] Agglomotive Hierarchical Clustering Region based routing [6] Equalized cluster head election routing protocol [6] Terrain based Routing using Fuzzy rules for precision agriculture" [6], [53] Segmentación [48], [40] Segmento de tiempo [73] Clasificación de Bayes ingenuo con distribución gaussiana [46] Reglas de asociación [46], [3] Descomposición de abono verde y Redes de reglas de asociación [43] Recomendación cultivo caña de azúcar [60] Minería de regresión multivariable) [46] Ensemble learning [9] Red neuronal recurrente espaciotemporal (STRNN) [9] Deep learning Toma de decisiones de datos agrícolas [56] Rendimiento de cultivo -QRECF-DFFMPC [59] Estudio del crecimiento de la col [26] Sistemas de recomendación Recomendación cultivo caña de azúcar [60] K-NN [74], [37], [78] , [3], Calidad de agua [22] Predicción del nivel de humedad [38] Naive bayes ( nb) [74], [78] Mejorar la calidad de los cultivos [58] clasificación de hongos comestibles o no comestibles [70] Rendimiento del cultivo de arroz [29] Bayes net clasificación de hongos comestibles o no comestibles [70] [80] ZeroR clasificación de hongos comestibles o no comestibles [70] K-measns clustering [33] Bagged-C4.5 [79] Regresión lineal [72], Calidad de agua [22] ARIMA (Autoregressive Integrated Moving Average) [81] Bagging (BG) …”
Section: Tabla 7: Técnicas De Minería De Datosunclassified
“…After that, the moths arrange themselves differently in relation to the appropriate flames. The quantity of flames to be followed reduced as the number of iterations raised, as in equation (3). N flames = round (N − l * (N − 1) / T)…”
Section: An Acquisition Based Optimised Crop Recommendation System Wi...mentioning
confidence: 99%
“…A model developed by Diepeveen et al in [48] can be used in agriculture to understand the influence of location and temperature on crops. In addition, elements such as soil, humidity, rainfall, and moisture were found to have an influence on crop yield [49].…”
Section: Variables Influencing Crop Diseases and Pestsmentioning
confidence: 99%