Machine learning techniques comparison for risk assessment of cardiovascular disease development by health indicators / Comparação de técnicas de aprendizagem de máquinas para avaliação de risco de desenvolvimento de doença cardiovascular por indicadores de saúde
Abstract:Currently, one of the leading causes of death around the world are caused by diseases or acute syndromes installed in the cardiovascular system of the human body. Thus, this paper presents a modern alternative for the detection of cardiovascular diseases from health indicators such as age, gender, glucose and cholesterol indices, used as inputs for machine learning systems. The evaluation is made by using supervised learning algorithms, such as K-Nearest Neighbours, Decision Tree, Logistic Regression, Voting C… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.