2022
DOI: 10.1007/s42044-022-00101-0
|View full text |Cite
|
Sign up to set email alerts
|

Machine learning techniques for dental disease prediction

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
3
2
1

Relationship

0
6

Authors

Journals

citations
Cited by 7 publications
(2 citation statements)
references
References 13 publications
0
1
0
1
Order By: Relevance
“…Hasil Pengklasifikasi regresi logistik mengungguli setiap pengklasifikasi lain dalam semua pengukuran dengan akurasi mendekati 95,89%. (Rimi et al, 2022).…”
Section: A Klasifikasiunclassified
“…Hasil Pengklasifikasi regresi logistik mengungguli setiap pengklasifikasi lain dalam semua pengukuran dengan akurasi mendekati 95,89%. (Rimi et al, 2022).…”
Section: A Klasifikasiunclassified
“…Recent research on dental caries was conducted by Rimi et al [3], who discussed the prediction of dental caries using Machine Learning(ML). In their experiments, they used nine algorithms, namely K-Nearest Neighbors (KNN), logistic regression (LR), support vector machine (SVM), random forest (RF), naïve Bayes (NB), classification and regression trees, multilayer perception (MLP), linear discriminant analysis (LDA), and adaptive Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s).…”
Section: Introductionmentioning
confidence: 99%