2021
DOI: 10.1101/2021.08.30.458244
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

(Machine) Learning the mutation signatures of SARS-CoV-2: a primer for predictive prognosis

Abstract: Motivation: Continuous emergence of new variants through appearance, accumulation and disappearance of mutations in viruses is a hallmark of many viral diseases. SARS-CoV-2 and its variants have particularly exerted tremendous pressure on global healthcare system owing to their life threatening and debilitating implications. The sheer plurality of the variants and huge scale of genome sequence data available for Covid19 have added to the challenges of traceability of mutations of concern. The latter however pr… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
1
1

Relationship

1
1

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 16 publications
(13 reference statements)
0
1
0
Order By: Relevance
“…N121K, a missense mutation in the membrane protein observed with frequency of 0.3%, is most associated (OR = 0.0025) with mild outcomes. The presence of this mutation was identified as a key predictor of asymptomatic outcomes in previous machine learning modeling of COVID-19 disease outcomes [13].…”
Section: Discussionmentioning
confidence: 99%
“…N121K, a missense mutation in the membrane protein observed with frequency of 0.3%, is most associated (OR = 0.0025) with mild outcomes. The presence of this mutation was identified as a key predictor of asymptomatic outcomes in previous machine learning modeling of COVID-19 disease outcomes [13].…”
Section: Discussionmentioning
confidence: 99%