The study "Automated Classification of Empon Plants: A Comparative Study Using Hu Moments and K-NN Algorithm" investigates the potential of image processing and machine learning techniques in the classification of empon plants, specifically ginger and turmeric. Utilizing a dataset of leaf images, the research employed the Canny method for image segmentation and Hu Moments for feature extraction, followed by classification using the K-Nearest Neighbors (K-NN) algorithm. The performance of the model was evaluated through a 5-fold cross-validation method, focusing on metrics such as accuracy, precision, recall, and F1-score. The results showcased the model's variable performance, with the highest accuracy reaching 65.33%. The study contributes to the field by demonstrating the application of Hu Moments in plant classification and by assessing the K-NN algorithm's effectiveness in this context. These findings offer insights into the potential of combining image processing techniques with machine learning for accurate plant classification, paving the way for further research in the area.