2016
DOI: 10.1146/annurev-soc-081715-074206
|View full text |Cite
|
Sign up to set email alerts
|

Machine Translation: Mining Text for Social Theory

Abstract: More of the social world lives within electronic text than ever before, from collective activity on the web, social media, and instant messaging to online transactions, government intelligence, and digitized libraries. This supply of text has elicited demand for natural language processing and machine learning tools to filter, search, and translate text into valuable data. We survey some of the most exciting computational approaches to text analysis, highlighting both supervised methods that extend old theorie… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
171
0
5

Year Published

2016
2016
2023
2023

Publication Types

Select...
8
1

Relationship

0
9

Authors

Journals

citations
Cited by 227 publications
(176 citation statements)
references
References 118 publications
(83 reference statements)
0
171
0
5
Order By: Relevance
“…Из этого списка особенного внимания заслуживают инстру-менты из области вычислительной лингвистики. Появление тематического моде-лирования описывается как шаг революционного значения, который на данный момент пока не оценен социологами в должной мере (Evans, Aceves, 2016). Главные области применения -это социология науки и социология культуры, ведь имен-но в этих областях исследователи имеют дело с текстами.…”
Section: новые методы анализа текстовых данныхunclassified
“…Из этого списка особенного внимания заслуживают инстру-менты из области вычислительной лингвистики. Появление тематического моде-лирования описывается как шаг революционного значения, который на данный момент пока не оценен социологами в должной мере (Evans, Aceves, 2016). Главные области применения -это социология науки и социология культуры, ведь имен-но в этих областях исследователи имеют дело с текстами.…”
Section: новые методы анализа текстовых данныхunclassified
“…Instead of focusing on parameter estimation of models built from theory, machine learning models are typically evaluated on their ability to predict held-out samples of the data. Unlike the predictive use of machine learning common among computer scientists, social scientists start employing machine learning to measure latent characteristics in the social world and refine methods of causal inference from observational data [29][30][31][32].…”
Section: Computational Tools As the Econometrics Of Sociologymentioning
confidence: 99%
“…During the last 20 years there has been a surge of methods developed for processing text under the label of natural language processing [33] including tools for the classification of content in large documents [34], semantic analysis [35], and opinion mining [36]. These tools, now readily available to researchers in the social sciences, make text originating from a wide range of sources such as books, newspapers, and online discussion groups accessible for large-scale quantitative analysis [29]. As becomes evident from a growing number of applications in sociology and the social sciences more generally, these powerful tools open new avenues for an ethnography on a systematic scale including, to name but a few, the study of culture [37,38], analyses of political expression and conflict [39,40] and, in combination with digitized archives, investigations of historical events and social change [41,42].…”
Section: Computational Tools As the Econometrics Of Sociologymentioning
confidence: 99%
“…Recent advances in digital technology have resulted in the production and availability of large amounts of online information from social media posts to digitised libraries (Evans and Aceves, 2016;Light, 2014). This vast body of material provides an increasingly important source of data that complements traditional quantitative and qualitative data and allows researchers to ask novel research questions as well as unravel robust patterns about organisational and social phenomena.…”
Section: Introductionmentioning
confidence: 99%