As an important component of transportation system, public transportation accounts for a considerable proportion in the whole traffic flow. The public transportation vehicles can be categorized into two categories as follows: one with determinate trajectories and schedules such as bus, tramway, and light rail; the other with flexible and variable running paths, such as taxis. In this paper, we firstly present a destination-gathering-based driving path prediction method for taxis, which can make taxis' driving paths prescient in the initial stage of carrying passengers every time. Compared with ordinary vehicles, public transportation vehicles have such features as long time running on roads and no privacy-protection need, and thus their trajectories can be opened. Through utilizing the features above, we propose a novel public-transportation-assisted data delivery scheme (PTDD) used to improve the performance of data delivery of Vehicular Delay Tolerant Networks (VDTNs). Simulation results based on a real map demonstrate the effectiveness of the proposed scheme.