Ecological flows between habitats are vital for predicting and understanding structure and function of recipient systems. Ecological flows across riparian areas and headwater intermittent streams are likely to be especially important in many river networks because of the shear extent of these interfaces, their high edge-to-width ratio, and the alternation of wet and dry conditions in intermittent channels. While there has been substantial research supporting the importance of riparian-stream linkages above-ground, comparatively less research has investigated below-ground linkages. We tested the hypothesis that riparian roots are colonized by invertebrates as a food source within stream beds of intermittent headwater streams. We compared benthic invertebrate assemblages colonizing three types of buried substrates (leaves, roots, and plastic roots) among three intermittent Coastal Plain streams, each with a different riparian management treatment (clearcut, thinned, and reference), over a 1-year period. Invertebrate density was significantly lower in root litterbags than in plastic roots litterbags, but neither differed from densities in leaf litterbags. Total invertebrate abundances, however, were significantly higher in leaf and root litterbags compared to abundances in plastic root litterbags. Invertebrate biomass and richness did not vary among substrates, but invertebrate density, abundance, and richness all declined from the wet phase (September-December) through the dry phase (JuneAugust). Meiofauna and aquatic dipterans were the primary colonizing invertebrates during the wet phase. Relative abundance of terrestrial taxa increased during the dry phase, but their absolute abundance remained lower than aquatic taxa during the wet phase. Invertebrate composition did not differ among substrate types, but was significantly different among streams and time periods. Cumulative number of dry days, degree days, and redox depth all strongly correlated with assemblage structure as indicated by ordination scores. Our results suggest that subsurface invertebrates respond to leaves and roots as food sources, but assemblage composition is not substrate specific. Colonization of leaves and roots within stream beds by aquatic and terrestrial taxa supports the idea that headwater intermittent streams are important interfaces for the reciprocal exchange of energy and materials between terrestrial and aquatic ecosystems.