/npsi/ctrl?action=rtdoc&an=8934289&lang=en http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/ctrl?action=rtdoc&an=8934289&lang=frAccess and use of this website and the material on it are subject to the Terms and Conditions set forth at http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/jsp/nparc_cp.jsp?lang=en
NRC Publications Archive Archives des publications du CNRCThis publication could be one of several versions: author's original, accepted manuscript or the publisher's version. / La version de cette publication peut être l'une des suivantes : la version prépublication de l'auteur, la version acceptée du manuscrit ou la version de l'éditeur. For the publisher's version, please access the DOI link below./ Pour consulter la version de l'éditeur, utilisez le lien DOI ci-dessous.http://dx.doi.org/10.1021/ma801858dMacromolecules, 41, 24, pp. 9656-9662, 2008 Polymers of intrinsic microporosity containing trifluoromethyl and phenylsulfone groups as materials for membrane gas separation Du, Naiying; Robertson, Gilles; Song, Jingshe; Pinnau, Ingo; Thomas, Sylvie; Guiver, Michael Process and EnVironmental Technology, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada, and Membrane Technology and Research Inc., 1360 Willow Road, Suite 103, Menlo Park, California 94025-1516 ReceiVed August 14, 2008 ReVised Manuscript ReceiVed October 14, 2008 ABSTRACT: A series of ladder copolymers and a homopolymer were synthesized via aromatic nucleophilic substitution polycondensation of 5,5′,6,6′-tetrahydroxy-3,3,3′,3′-tetramethylspirobisindane with tetrafluoroterephthalonitrile and a new monomer heptafluoro-p-tolylphenylsulfone as potential materials for membrane gas separation. Ladder polymers of this type comprising rigid and contorted chain structure have been commonly referred to as polymers of intrinsic microporosity (PIM) on account of their extraordinarily high fractional free volumes (FFV) and high gas permeability (P). The PIM polymer series of the present study was prepared in high molecular weight and low molecular weight distribution, using new experimental conditions of short reaction times and a high temperature of 160°C. Polymer chain d-spacing was investigated using wide-angle X-ray diffraction. Polymer free volume was calculated from the polymer density and specific van der Waals volume. Gas permeabilities for oxygen and carbon dioxide decreased with increasing content of the trifluoromethylphenylsulfone versus the dinitrile monomer within the copolymer, while the selectivities of gases against nitrogen increased. The pendent phenylsulfone groups likely reside within the interchain free volume of the rigid and contorted ladder polymer, acting to reduce gas permeability and increase selectivity, though with no overall loss of performance relative the Robeson upper bound. Evidence for this is a reduction in d-spacing and fractional free volume with increasing content of the trifluoromethylphenylsulfone versus the dinitrile monomer in the copolymer series. The relationship between the gas permeabilit...