Macrophages provide a first line of defense against Mycobacterium tuberculosis. However, in instances where macrophage activation for killing is suboptimal, M. tuberculosis is capable of surviving intracellularly. IL-32 is a recently described cytokine induced by M. tuberculosis in a variety of cell types including human monocytes and macrophages. In this study, we investigated the biological significance of IL-32 in an in vitro model of M. tuberculosis infection in differentiated THP-1 human macrophages in which IL-32 expression was silenced using stable expression of short hairpin RNA (shRNA). Inhibition of endogenous IL-32 production in THP-1 cells that express one of three distinct shRNA-IL-32 constructs significantly decreased M. tuberculosis induction of TNF-α by ∼60%, IL-1β by 30–60%, and IL-8 by 40–50% and concomitantly increased the number of cell-associated M. tuberculosis bacteria compared with THP-1 cells stably expressing a scrambled shRNA. In THP-1 cells infected with M. tuberculosis and stimulated with rIL-32, a greater level of apoptosis was observed compared with that with M. tuberculosis infection alone. Obversely, there was significant abrogation of apoptosis induced by M. tuberculosis and a concomitant decrease in caspase-3 activation in cells depleted of endogenous IL-32. rIL-32γ significantly reduced the number of viable intracellular M. tuberculosis bacteria, which was modestly but significantly abrogated with a caspase-3 inhibitor. We conclude that IL-32 plays a host defense role against M. tuberculosis in differentiated THP-1 human macrophages.