“…Although some powder and liquid desiccants (i.e., hygroscopic salts, silica gel, zeolite, and glycerin) have been used for conventional sorption-based dehumidification, there are significant challenges in developing bulk desiccants with tailorable structures, stable water adsorption/desorption, and low energy input for regeneration. − The incorporation of organic/inorganic hybrid desiccants within porous three-dimensional (3D) scaffolds is of particular interest, enabling the development of hybrid desiccants with multidimensional shapes (i.e., fabrics, gels, membranes, aerogels, hydrogels, and foams). − Emerging desiccants based on metal–organic frameworks (MOFs) and covalent organic frameworks (COFs) have shown rapid water vapor adsorption and desorption. − It is noted that 3D hybrid desiccants can release water and become regenerated via low-grade thermal energy intake (i.e., waste heat and solar energy) with the help of photothermal or radiative cooling materials, minimizing the carbon footprints of air conditioning. − The reversible water uptake/release and good long-term stability provide a potential avenue for using 3D hybrid desiccants as indoor humidity regulators compared to conventional humidifiers (i.e., based on evaporation and steam) and dehumidifiers (i.e., based on air conditioning and refrigeration). − …”