Interdependence of chemical structure, thin-film morphology, and transport properties is a key, yet often elusive aspect characterizing the design and development of high-mobility, solution-processed polymers for large-area and flexible electronics applications. There is a specific need to achieve >1 cm 2 V −1 s −1 field-effect mobilities (μ) at low processing temperatures in combination with environmental stability, especially in the case of electron-transporting polymers, which are still lagging behind hole transporting materials. Here, the synthesis of a naphthalene-diimide based donor-acceptor copolymer characterized by a selenophene vinylene selenophene donor moiety is reported. Optimized field-effect transistors show maximum μ of 2.4 cm 2 V −1 s −1 and promising ambient stability. A very marked film structural evolution is revealed with increasing annealing temperature, with evidence of a remarkable 3D crystallinity above 180 °C. Conversely, transport properties are found to be substantially optimized at 150 °C, with limited gain at higher temperature. This discrepancy is rationalized by the presence of a surface-segregated prevalently edge-on packed polymer phase, dominating the device accumulated channel. This study therefore serves the purpose of presenting a promising, high-electron-mobility copolymer that is processable at relatively low temperatures, and of clearly highlighting the necessity of specifically investigating channel morphology in assessing the structure-property nexus in semiconducting polymer thin films.