We argue that giant jumps of current at finite voltages observed in disordered films of InO, TiN, and YSi manifest a bistability caused by the overheating of electrons. One of the stable states is overheated and thus low resistive, while the other, high-resistive state is heated much less by the same voltage. The bistability occurs provided that cooling of electrons is inefficient and the temperature dependence of the equilibrium resistance R(T) is steep enough. We use experimental R(T) and assume phonon mechanism of the cooling taking into account its strong suppression by disorder. Our description of the details of the I-V characteristics does not involve adjustable parameters and turns out to be in quantitative agreement with the experiments. We propose experiments for more direct checks of this physical picture.