A new concept has been developed to assess, and a new technique developed to improve, the microthermomechanical rigidity of the solidifying shell in the secondary cooling zones during continuous casting of steel. This is to maximise the coherent solid shell resistance 'I c ' against thermometallurgical and mechanical stresses at different levels from meniscus. The idea behind this concept is to optimise the degree of homogeneity of the cooling pattern between a pair of rolls. The effect of the degree of homogeneity of the cooling pattern between a pair of rolls 'HDCP', in different spray cooling zones on the different types of centreline segregates has been investigated. A number of plant trials with two different water cooling patterns between a pair of rolls have been performed. The metallographic investigation contains examinations and measurements of the level of centreline segregates of collected samples. A one dimensional (1D) transient finite difference mathematical model of thermal, solidification, solid shell resistance and cooling conditions has been developed to test the different effects of spray patterns on the microthermomechanical rigidity concept and therefore on the mechanism of centreline macrosegregation level. The results indicate that the increase in the degree of homogeneity of the cooling conditions is proportional to the increase in slab internal microquality. The results show that the degree of homogeneity of the cooling pattern affects centreline macrosegregation significantly. This depends significantly on the degree of homogeneity of cooling pattern between a pair of rolls, its location from the meniscus and, generally, on the increase microthermomechanical rigidity concept.