As a dairy product, yogurt delivers nourishing milk components through the beneficial microbial fermentation process, improved by bioavailability and bioaccessibility–an exclusive combined food asset. In recent decades, there has been considerable attention to yogurt product development particularly in areas like influence by antioxidant-rich fruits, different factors affecting its probiotic viability, and the functionality of inulin and probiotics. Essentially, many published reviews frequently focus on the functionalities associated with yogurt products, however, those articulating yogurt ingredients specific to associated preservation strategies, processing conditions, and analytical detection techniques are very few, to the best of our knowledge. The knowledge and understanding of preservation strategies that enhance the ingredients in yogurt products, and their function as modern drug delivery systems are essential, given the opportunities it can provide for future research. Therefore, this overview discussed how yogurt product ingredients have been enhanced, from preservation strategies, processing conditions, analytical detection methods, and therapeutic delivery standpoints. The survey methodology involved major stages, from the brainstorming of research questions, search strategy, effective utilization of databases, inclusion and exclusion criteria, etc. The innovative successes of yogurts would be enhanced via the physicochemical, nutritional and therapeutic aspects of the ingredients/products. Besides processing conditions to influence the yogurt constituents, overall acceptability, quality, and shelf-life, the analytical assays would help detect the hidden product constituents, toxins, and other storage-related changes. The therapeutic role of yogurt-a modern drug delivery system, would be demonstrated via the supplementation (of yogurt) either alone or with bioactive ingredients. The future of yogurt requires the collective action of stakeholders to formulate unique variants with different natural blends, where synthetic ingredients become completely replaced by the plant’s derivatives, which enhance the acidification rate and extend shelf life.