Abstract. The Alnö complex in central Sweden is one of the largest alkaline and carbonatite ring-shaped intrusions in the world. Presented here is the 3D inversion of ground gravity and aeromagnetic data that confirms some of the previous ideas about the 3D geometry of the complex but also suggests that the complex may continue laterally further to north than earlier expected. The gravity and aeromagnetic data show the complex as (i) a strong positiver Bouguer anomaly, around 20 mGal, one of the strongest gravity gradients observed in Sweden, and (ii) a strong positive magnetic anomaly, exceeding 2000 nT.
5Magnetic structures are clearly discernible within the complex and surrounding area. Petrophysical measurements (density, bulk magnetic susceptibility, and magnetic remanence) were used to constrain the 3D inversion. Both gravity and magnetic inversion models suggest that dense (> 2850 kg/m 3 ) and magnetic (> 0.05 SI) rocks extend down to about 3.5-4 km depth.Previous studies have suggested a solidified magma reservoir at this approximate depth. The inversion models further suggest that two apparently separate regions within the intrusion with gravity and magnetic highs are likely connected at depth, starting 10 from 800-1000 m, implying a common source for the rocks observed in these two regions. The modelling of the aeromagnetic data indicates that a more than 3 km wide ring-shaped magnetic high in the bay that can be a hidden part of the complex, linking a satellite intrusion in Söråker on the northern side of the bay to the main intrusion on the Alnö Island. While the rim of the ring must consist of highly susceptible rocks to support the magnetic anomaly, the centre has a relatively low magnetisation and is probably made up of low-susceptible wall-rocks or metasomatised wall-rocks down to about 2 km. Below this depth the 15 3D susceptibility model shows higher magnetic susceptibility values. From these observations the solidified magma chamber is interpreted to extend further to north than has previously been suggested.