Understanding microstructure formation during high-pressure die casting (HPDC) is important for the effective quality control of high-pressure diecast aluminum-alloy components for highintegrity applications. In this study, two HPDC-specific aluminum alloys, AlSi4MgMn and AlMg5Si2Mn, were cast into tensile test bars by cold-chamber (CC) HPDC. The microstructures of the tensile bar specimens were characterized at different length scales, from the scale of the casting to the scale of the eutectic interlamellar spacing. The results show that the salient ascast microstructural features, e.g., externally solidified crystals (ESCs), defect bands, the surface layer, grain size distribution, porosity, and hot tears were similar for both alloys. The formation of these features can be understood by considering the influence of flow and solidification during each stage of the HPDC process.