Hercynite magnetic nanoparticles were produced through the co-precipitation of ferrous and aluminum cations. The surface of hercynite was respectively coated with silica, 2,4,6-trichloro-1,3,5-triazine, and 1H-pyrazole-3,5-dicarboxylic acid to provide a suitable substrate for Pd(II) loading, furnishing Pd@Her-TCT-PDA. Subsequently, the introduced Pd(II) was reduced to Pd(0) using NaBH4. FT-IR, EDS, XRD, TGA, TEM and SEM images were the characteristic methods to prove the success of catalyst synthesis. The SEM image illustrated the particles with a nanosize of 25–50 nm and TEM image confirmed the presence of Pd nanoparticles with sizes lower than 2 nm. EDS elemental analysis of the catalyst proved the existence of Pd, Fe, and Al atoms along with the C, O, N, and Si atoms belong to the heterocyclic moieties. VSM analysis clarified a considerable drop in the magnetic properties of the hercynite core of the final catalyst due to its modified surface. TGA curve demonstrated that Pd@Her-TCT-PDA contains 20% organic content, attributed to the anchored heterocyclic ligands. Finally, Pd@Her-TCT-PDA was employed along with NaBH4 as a catalytic system to reduce completely the nitro group of aromatic compounds to their corresponding amines. The recyclability tests showed low drop in the catalytic activity of Pd@Her-TCT-PDA after third run with negligible leaching of Pd NPs.