During the Chile Triple Junction (CTJ) cruise, geophysical surveys were conducted between 45°S and 48°S, in the region of the Chile Triple Junction (CTJ), where the Nazca and Antarctica Plates are subducting beneath the South American Plate. Near the CTJ, the South Chile Rise (SCR), which separates the Nazca and Antarctica lower plates, consists of three spreading segments trending~N160°, separated by a series of parallel fracture zones. The active spreading centers of the three segments consist of grabens with various widths and depths, bounded by steep fault scarps. We provide robust data showing that the SCR recorded remote and long-term effects of ridge subduction far from the subduction front. Magnetic profiles, multibeam bathymetric, and seismic data were acquired at intervals of 13 km along a N80°E direction across the SCR during the CTJ cruise of R/V L'Atalante. Deformation of the oceanic lithosphere includes (1) a segmentation of the spreading axes along strike, (2) some ridge jumps, and (3) local constriction and changes in trend of the fracture zone valleys. Off-axis volcanism is observed in places that may suggest a link with an abnormal stress field induced by ridge subduction. The tectonic and volcanic anomalies, which occurred in response to the subduction of the SCR1 axis, may be correlated with geochemical anomalies and slab fragmentation recognized by previous works.