This study addresses thermal transportation associated with dissipated flow of a Maxwell Sutterby nanofluid caused by an elongating surface. The fluid passes across Darcy–Forchheimer sponge medium and it is affected by electromagnetic field applied along the normal surface. Appropriate similarity transforms are employed to convert the controlling partial differential equations into ordinary differential form, which are then resolved numerically with implementation of Runge–Kutta method and shooting approach. The computational analysis for physical insight is attempted for varying inputs of pertinent parameters. The output revealed that the velocity of fluid for shear thickening is slower than that of shear thinning. The fluid temperature increases directly with Eckert number, and parameters of Cattaneo–Christov diffusion, radiation, electric field, magnetic field, Brownian motion and thermophoresis. The Nusselt number explicitly elevated as the values of radiation and Hartmann number, as well as Brownian motion, improved. The nanoparticle volume fraction diminishes against Prandtl number and Lewis number.