In this work, we describe the electrospinning of (K,Na)NbO3 fibers and the effect of calcination temperature on the final phase composition. The envisaged application is for the fabrication of ferroelectric sensor hybrid materials. A solution of potassium acetate, sodium methoxide, and niobium ethoxide dissolved in methanol, acetylacetone, and acetic acid was mixed with polyvinylpyrrolidone (PVP) dissolved in methanol, producing a viscous solution for electrospinning. Confirmation that the proposed equation on the average diameter of fibers produced from high viscosity solutions was larger than that of a lower viscosity solution was made. A scanning electron microscopy (SEM) study showed the fibers to be cylindrical, smooth with diameters of around 400 nm and an aspect ratio >1000. The electrospun fibers were calcined from 700°C to 1050°C observing the fiber morphology. With increasing calcining temperature, the grain size increased. The calcined (K,Na)NbO3 nanofibers were brittle and generally found to display the “necklace effect.”