A unified master equation for unimolecular reactions induced by monochromatic infrared radiation (URIMIR) is presented. Its effective rate coefficient matrix covers both case B (Pauli equation) and case C, properly including the nonlinearity of the latter. Exact quantum mechanical model solutions are compared with results from the approximate unified master equation. The exact analytical solutions of the master equation are presented for the URIMIR of some realistic molecular models. The important new properties of the transition range between case B and case C are quantitatively discussed with respect to time dependent and steady state level populations, time dependent and steady state rate coefficients and their nonlinear intensity dependence, and with respect to the influence of molecular properties. The role of case C for the interpretation of static field effects and its importance for efficient isotope separation are pointed out.