Magnetic rare-earth / non-magnetic metal superlattices are well-known to display chiral spin helices in the rare-earth layers that propagate coherently across the non-magnetic layers. However, the underlying mechanism that preserves the magnetic phase and chirality coherence across the non-magnetic layers has remained elusive. In this Letter, we use resonant and element-specific x-ray scattering to evidence directly the formation of two fundamentally different long-range modulations in a Holmium/Yttrium (Ho/Y) multilayer: the known Ho chiral spin helix with periodicity 25Å, and a newly observed charge density wave with periodicity 16Å that propagates through both the Ho and non-magnetic Y layer. With x-ray circular magnetic dichroism measurements ruling out the existence of a magnetic proximity effect induced moment in the non-magnetic Y layers, we propose that the charge density wave is also chiral, thus providing the means for the transmittance of magnetic chirality coherence between Ho layers. * victor.ukleev@psi.ch