Resonance ultrasound attenuation, albeit broadened, is observed in doped cubic crystal ZnSe with a part of the Zn 2þ ions substituted by magnetic anisotropic Cr 2þ ions. In the tetrahedral selenium environment the latter form a T term Jahn-Teller (JT) center with a Te JT problem and three equivalent distortions along the three tetragonal axes. In sufficiently strong magnetic fields (B > 4 T) applied along the [001] direction the degeneracy of the ground state is removed, and the ultrasound wave propagating along [110] and polarized along 1 10 ½ (at T ¼ 1.3 K) does not interact with the center, its impurity attenuation being reduced to zero. By comparison, this allows to estimate the contribution of the Cr centers to the attenuation of ultrasound in the ZnSe:Cr crystal in zero magnetic field. The experimental data revealed a strong dependence of the attenuation on the ultrasound frequency, evidencing for the resonance nature of the attenuation: there is no frequency dependence in relaxational attenuation with the relaxation time much larger than the period of the ultrasonic wave. The resonance attenuation is attributed to transitions between the ground state energy levels, split by spin-orbital interaction. The high sensitivity of the resonance absorption on the ultrasound power is also discussed.