Previous studies have reported that T cell deficiency reduced infarct sizes after transient middle cerebral artery (MCA) suture occlusion in mice. However, how reperfusion and different models affect the detrimental effects of T cells have not been studied. We investigated the effects of T cell deficiency in nude rats using two stroke models and compared their infarct sizes with those in WT rats. In the distal MCA occlusion (MCAo) model, the distal MCA was permanently occluded and the bilateral common carotid arteries (CCAs) were transiently occluded for 60 min. In the suture MCAo model, the MCA was transiently occluded for 100 min by the insertion of a monofilament suture. Our results showed that T cell deficiency resulted in about a 50% reduction in infarct size in the suture MCAo model, whereas it had no effect in the distal MCAo model, suggesting the protective effects of T cell deficiency are dependent on the ischemic model used. We further found more total T cells, CD4 T cells and CD8 T cells in the ischemic brains of WT rats in the suture MCAo model than in the distal MCAo model. In addition, we detected more CD68-expressing macrophages in the ischemic brains of WT rats than in nude rats in the suture MCAo but not the distal MCAo model. Lymphocyte reconstitution in nude rats resulted in larger infarct sizes in the suture MCAo, but not in the distal MCAo stroke model. The results of regional CBF measurement indicated a total reperfusion in the MCAo model but only a partial reperfusion in the distal MCAo model. In conclusion, the protective effects of T cell deficiency on brain injury are dependent on the ischemic model used; likely associated with different degrees of reperfusion.