2016
DOI: 10.1063/1.4942951
|View full text |Cite
|
Sign up to set email alerts
|

Magnetic hyperthermia heating of cobalt ferrite nanoparticles prepared by low temperature ferrous sulfate based method

Abstract: A facile low temperature co-precipitation method for the synthesis of crystalline cobalt ferrite nanostructures using ferrous sulfate salt as the precursor has been discussed. The prepared samples were compared with nanoparticles prepared by conventional co-precipitation and hydrothermal methods using ferric nitrate as the precursor. X-ray diffraction studies confirmed the formation of cubic spinel cobalt ferrites when dried at 110 °C as opposed to conventional methods which required higher temperatures/pressu… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
19
0
1

Year Published

2016
2016
2021
2021

Publication Types

Select...
8
1

Relationship

0
9

Authors

Journals

citations
Cited by 32 publications
(20 citation statements)
references
References 18 publications
0
19
0
1
Order By: Relevance
“…Cobalt ferrite nanoparticles have been prepared by several methods, including sol-gel [11], hydrothermal [12,13], co-precipitation [14], and thermal decomposition methods [15,16]. Using the co-precipitation process, many researchers have made efforts to achieve the smallest possible particles and to improve the magnetic properties and SLP of the cobalt ferrite nanoparticles and cobalt zinc ferrite nanoparticles [14,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35]. The ferromagnetic-superparamagnetic size threshold for cobalt ferrite nanoparticles has been reported by Pereira et al, who prepared superparamagnetic cobalt ferrite nanoparticles with the tuning of particle size (4.2−4.8 nm) and magnetic properties ( M s 30.6–48.8 emu/g) using a co-precipitation method.…”
Section: Introductionmentioning
confidence: 99%
“…Cobalt ferrite nanoparticles have been prepared by several methods, including sol-gel [11], hydrothermal [12,13], co-precipitation [14], and thermal decomposition methods [15,16]. Using the co-precipitation process, many researchers have made efforts to achieve the smallest possible particles and to improve the magnetic properties and SLP of the cobalt ferrite nanoparticles and cobalt zinc ferrite nanoparticles [14,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35]. The ferromagnetic-superparamagnetic size threshold for cobalt ferrite nanoparticles has been reported by Pereira et al, who prepared superparamagnetic cobalt ferrite nanoparticles with the tuning of particle size (4.2−4.8 nm) and magnetic properties ( M s 30.6–48.8 emu/g) using a co-precipitation method.…”
Section: Introductionmentioning
confidence: 99%
“…Since, the oxidation potential of Co 2+ is much lower than that of Fe 2+ , so Co 2+ remains same in the reaction. It is worth mentionable here that the use of the ferrous salt over ferric salt is advantageous as the oxidation of Fe 2+ (unstable state) to Fe 3+ (stable state) results excess Gibbs free energy, which favours the growth of crystalline cobalt ferrite at low temperature and at short reaction time [21,22]. As mentioned in the synthesis, the similar reaction procedures were followed for other two extreme cases also, where, the only difference was the concentration of oleic acid.…”
Section: Effect Of Oleic Acid Concentrationmentioning
confidence: 92%
“…Nanopartículas magnéticas (NPMs) de ferrita de zinc (Arteaga-Cardona et al, 2017) Nanopartículas de ferrita de níquel revestidas con polietilenglicol (PEG) (Iqbal, Bae, Rhee & Hong, 2016) Nanopartículas de maghemita (Múzquiz-Ramos, Guerrero-Chávez, Macías-Martínez, López-Badillo & García-Cerda, 2015) Nanopartículas de ferrita de Mn 2+ dopado Mg 0.5 Zn 0.5 -xMn x Fe 2 O 4 (x = 0, 0.125, 0.250, 0.375, 0.500) (Sharma et al, 2017) Nanopartículas de ferrita de cobalto (Yadavalli, Jain, Chandrasekharan & Chennakesavulu, 2016) Microemulsión Nanopartículas magnéticas recubiertas con ácido oleico (NPMsOA) cargadas con poli (metacrilato) (Feuser et al, 2015) Nanopartículas de sílice modificadas orgánicamente (ormosil) (Nagesetti & McGoron, 2016) Magnetita superparamagnética (Fe 3 O 4 ) (Ramesh, Ponnusamy & Muthamizhchelvan, 2011) Nanopartículas de perovskita a base de manganeso (Soleymani & Edrissi, 2016) Descomposición térmica Ferrofluído de Fe 3 O 4 funcionalizado con péptidos RGD (Arriortua et al, 2016) Nanocristales de óxido de hierro (Bear et al, 2014) Nanopartículas de ferrita de cobalto (Cotica et al, 2014) Nanopartículas de ferrita dispersables en agua superparamagnéticas (MFe 2 O 4 ) (Sabale, Jadhav & Yu, 2017) Nanopartículas de ferrita de níquel (Stefanou et al, 2014) Nanopartículas de magnetita (Fe 3 O 4 ) (Xiao et al, 2015) Sonoquímica Nanocompuestos magnéticos PET / Fe 3 O 4 , CA, AS (Mallakpour & Javadpour, 2018) Ferrofluido de hematita/magnetita (Zayed, Ahmed, Imam, & El Sherbiny, 2016a, 2016bZayed, Imam, Ahmed, & El Sherbiny, 2017) Técnica de Massart…”
Section: Método De Síntesis Materials Utilizado Autoresunclassified