We study the dynamics of a magnetic domain wall, inserted in, or juxtaposed to, a conventional superconductor, via the passage of a spin polarized current through a FSF junction. Solving the Landau-Lifshitz-Gilbert equation of motion for the magnetic moments we calculate the velocity of the domain wall and compare it with the case of a FNF junction. We find that in several regimes the domain wall velocity is larger when it is driven by a supercurrent.