Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
When a lava flow enters a body of water, either a lake, sea, river or ocean, explosive interaction may arise. However, when it is an 'a'ā lava flow entering water, a more complex interaction occurs, that is very poorly described and documented in literature. In this paper, we analysed the 2–4 ka San Bartolo lava flow field emplaced on the north flank of Stromboli volcano, Italy. The lava flow field extends from ~ 650 m a.s.l. where the eruptive fissure is located, with two lava channels being apparent on the steep down to the coast. Along the coast the lava flow field expands to form a lava delta ~ 1 km wide characterised by 16 lava ‘Flow’ units. We performed a field survey to characterise the features of lava entering the sea and the associated formation of different components and magnetic measurements to infer the flow fabrics and emplacement process of the lava flow system. We measured the density, porosity and connectivity of several specimens to analyse the effect of lava-water interaction on the content in vesicles and their connectivity and conducted a macroscopic componentry analysis (clast count) at selected sites to infer the character of the eroded offshore segment of the lava flow field and its component flow units. The collected data allowed us to define the main components of a lava delta fed by 'a'ā lava flows, with its channels, littoral units, ramps, lava tubes, and inflated pāhoehoe flows controlled by the arterial 'a'ā flow fronts. The spatial organisation of these components allowed us to build a three-step descriptive model for 'a'ā entering a water. The initial stage corresponds to the entry of channel-fed 'a'ā lava flow into the sea which fragments to form metric blocks of 'a'ā lava. Continued lava supply to the foreshore causes flow units to stall while spreading over this substrate. Subsequent 'a'ā lava flow units ramp up behind the stalled flow front barrier. Lava tubes extending through the stalled flow barrier feed the seaward extension of a bench made of several pāhoehoe flow units.
When a lava flow enters a body of water, either a lake, sea, river or ocean, explosive interaction may arise. However, when it is an 'a'ā lava flow entering water, a more complex interaction occurs, that is very poorly described and documented in literature. In this paper, we analysed the 2–4 ka San Bartolo lava flow field emplaced on the north flank of Stromboli volcano, Italy. The lava flow field extends from ~ 650 m a.s.l. where the eruptive fissure is located, with two lava channels being apparent on the steep down to the coast. Along the coast the lava flow field expands to form a lava delta ~ 1 km wide characterised by 16 lava ‘Flow’ units. We performed a field survey to characterise the features of lava entering the sea and the associated formation of different components and magnetic measurements to infer the flow fabrics and emplacement process of the lava flow system. We measured the density, porosity and connectivity of several specimens to analyse the effect of lava-water interaction on the content in vesicles and their connectivity and conducted a macroscopic componentry analysis (clast count) at selected sites to infer the character of the eroded offshore segment of the lava flow field and its component flow units. The collected data allowed us to define the main components of a lava delta fed by 'a'ā lava flows, with its channels, littoral units, ramps, lava tubes, and inflated pāhoehoe flows controlled by the arterial 'a'ā flow fronts. The spatial organisation of these components allowed us to build a three-step descriptive model for 'a'ā entering a water. The initial stage corresponds to the entry of channel-fed 'a'ā lava flow into the sea which fragments to form metric blocks of 'a'ā lava. Continued lava supply to the foreshore causes flow units to stall while spreading over this substrate. Subsequent 'a'ā lava flow units ramp up behind the stalled flow front barrier. Lava tubes extending through the stalled flow barrier feed the seaward extension of a bench made of several pāhoehoe flow units.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.