The use of nano-photocatalysts for the water/wastewater purifications, particularly in developing regions, offers promising advantages over conventional technologies. TiO2-based photocatalysts deposited on fabrics represent an efficient solution for obtaining heterogeneous photocatalysts, which are easily adaptable in the already installed water treatment plants or air purification systems. Despite the huge effort spent to develop and characterize novel nano-photocatalysts, which are especially active under solar light, knowledge gaps still persist for their full-scale application, starting from the reactor design and scale-up and the evaluation of the photocatalytic efficiency in pre-pilot scenarios. In this study, we offered easily scalable solutions for adapting TiO2-based photocatalysts, which are deposited on different kinds of fabrics and implemented in a 6 L semi-pilot plant, using the photodegradation of Rhodamine B (RhB) as a model of water pollution. We took advantage of a multi-variable optimization approach to identify the best design options in terms of photodegradation efficiency and turnover frequency (TOF). Surprisingly, in the condition of use, the irradiation with a light-emitting diode (LED) visible lamp appeared as a valid alternative to the use of UV LED. The identification of the best design options in the semi-pilot plant allowed scaling up the technology in a 100 L pilot plant suitable for the treatment of industrial wastewater.