The cover image is based on a cross-sectional TEM micrograph of a high current pulsed cathodic arc deposited (Cr 0.8 Mn 0.2 ) 2 AlC thin film (20 nm thickness), revealing its island-like nature.
© Aurelija MockutėISBN: 978-91-7519-407-3 ISSN 0345-7524 Printed by LiU-Tryck Linköping, Sweden, 2014
AbstractThis Thesis explores synthesis and characterization of new MAX phase alloys (M = early transition metal, A = A-group element, and X = C or N), based on incorporation of M and X elements previously not considered. My primary focus is on M = Mn for attaining magnetic properties, and on X = O for potential tuning of the transport properties. A recent theoretical study predicted (Cr 1-x Mn x ) 2 AlC MAX phase to be a stable magnetic nanolaminate. I aimed at realizing this material and through a combinatorial approach based on magnetron sputtering from elemental targets, the first experimental evidence of Mn incorporation (x = 0.16) in a MAX phase is presented. The corresponding MAX phase was also synthesized using cathodic arc film deposition (x = 0.20) and bulk synthesis methods (x = 0.06). The primary characterization techniques were X-ray diffraction and high-resolution (scanning) transmission electron microscopy in combination with energy dispersive X-ray spectroscopy and/or electron energy loss spectroscopy, to obtain a precise local quantification of the MAX phase composition and to perform lattice resolved imaging. For epitaxial film growth of (Cr 1-x Mn x ) 2 AlC, evidence is presented for the formation of (Cr 1-y Mn y ) 5 Al 8 , exhibiting a bcc structure with an interplanar spacing matching exactly half a unit cell of the hexagonal MAX phase. Consequently, routinely performed X-ray diffraction symmetric θ-2θ measurements result in peak positions that are identical for the two phases. As (Cr 1-y Mn y ) 5 Al 8 is shown to display a magnetic response, its presence needs to be taken into consideration when evaluating the magnetic properties of the MAX phase. Methods to distinguish between
Populärvetenskaplig sammanfattningMaterialvetenskap inkluderar forskning på material, dess syntes, struktur och sammansättning samt resulterande egenskaper, med fokus på att utveckla nya material skräddarsydda för specifika ändamål.En viktig del inom materialvetenskapen är forskning på tunna filmer, d.v.s. lager av material med tjocklek från ett atomlager till några mikrometer. Egenskaperna hos en yta, till exempel friktion, slitmotstånd, ledningsförmåga, eller utseende, kan förbättras genom att applicera en lämplig tunnfilm.Den här avhandlingen handlar om en grupp material som kallas MAX-faser. M står för en övergångsmetall (t.ex. Ti, Cr, Nb, Sc), A för ett element från grupp A i det periodiska systemet (t.ex. Al, Si, Ge, Ga), och X står för C eller N. Atomer av tre sådana olika element staplas i en struktur bestående av rena atomlager, t.ex. M-X-M-A-M-X-M-A. Ti 2 AlC, Cr 2 AlC, Ti 3 SiC 2 och Ti 4 AlN 3 är några exempel av mer än 60 hittills upptäckta MAX-faser. Det extra spännande med MAX-faser är att de kombinerar ...