Single-phase samples of the layered perovskite-like cobalt oxides Ln 0.2 Sr 0.8 CoO 3-δ (Ln = Sm, Gd, Dy) with the same oxygen nonstoichiometry index δ = 0.37 ± 0.01 were synthesized. All samples are characterized by a tetragonal unit cell with the space group I4/mmm. The structural, magnetic, electric transport and dilatation properties of the obtained samples are investigated. The studied samples are characterized by two anomalies in magnetic properties, a high-temperature maximum near Т m = 350 К with magnetic field hysteresis below T m , and a diffuse peak in the intermediate temperature range, which shifts with ionic radius decrease of the rare-earth element to higher temperatures. The high-temperature maxima of the magnetic susceptibility correlate with anomalies in thermal expansion, heat capacity and the features in the temperature dependences of the electrical resistivity, pointing to a strong relationship between the structural, magnetic and electronic degrees of freedom. The given comparative analysis of the experimental data of various substituting rare-earth elements with the same oxygen nonstoichiometry has been carried out for the first time.