The utilization of anode-supported electrolytes is a very promising strategy to improve the electrical performance in solid oxide fuel cells (SOFCs) application, because it is possible to decrease considerably the electrolytes thickness. In this paper, ultra-thin ceria-based electrolyte films were successfully prepared on porous NiO/GDC anode support. The electrolyte films with thickness of 0.5-1 µm were deposited by a novel citrate sol-gel route combined with a suspension spray coating technique. The characterization and microstructure of the ultra-thin films were investigated by DTA/TGA, XRD and FE-SEM. The results showed that ceria-based films prepared were pure fluorite type nanocrystalline, homogenous and almost fully dense. Electrochemical performance of single cells based on the ultra-thin electrolyte films was also tested. The single cell with electrolyte thickness of 1 µm provided an OCV of 0.832 V at 500 o C which was close to that of the reported single cell with thicker ceria-based electrolyte film of 10 µm, and maximum power densities of 59.6, 121.9 and 133.8 mW/cm 2 at 500, 600, and 700 o C, respectively. These ultra-thin electrolyte films showed good combination with the porous NiO/GDC anode supports, and good insulating ability for inactive electron migration at temperatures less than 600 o C.